
期刊简介
《中华儿科杂志》为中国科协主管,中华医学会主办的我国儿科医学领域惟一的高级学术期刊,创刊于1950年。现为月刊,80面/期,面向国内外公开 发行。 读者对象:儿科临床、科研与教学人员,儿童保健工作者。陈翠贞、邓金鎏、诸福棠、周华康、江载芳、吴希如、杨锡强、桂永浩等儿科界著名专家历任总编辑,现任总编辑杜军保教授。本刊办刊宗旨:理论与实践相结合,重在实践;基础与临床相结合,重在临床;普及与提高相结合,重在提高。为促进我国儿科医学领域的学术交流服 务;为我国儿科医学事业的发展与提高服务;为培养我国的儿科医学人才服务;为我国儿童的健康服务。办刊方针:专家办刊,编委会办刊。报道重点:儿科医学领 域的新理论、新成果、新方法、新技术及成熟的临床经验。《中华儿科杂志》是中国核心期刊,是中国期刊方阵中的双效期刊,代表儿科医学领域最高学术水平。被14个国内外权威数据库或工具书收录:中国科技论 文与引文数据库(CSTPCD);万方数据库系统;美国国立医学图书馆医学索引(MEDLINE);俄罗斯文摘杂志(AJ);生物学文 摘;(BIOSIS;PREVIEW);癌症文摘(CANCERLIT);生物学文摘(Biological Abstracts)等。
常用的医学图像处理算法
时间:2024-02-27 11:24:18
常用的医学图像处理算法有很多种,下面列举一些主要的算法:
图像预处理算法:包括滤波、平滑、增强等操作,用于改善图像质量,减少噪声,增强感兴趣区域等。例如,中值滤波、高斯滤波等可以用于去除图像中的噪声;直方图均衡化可以用于增强图像的对比度。
图像分割算法:用于将图像中的不同区域或目标分离开来。常见的分割算法有阈值分割、边缘检测、区域生长、分水岭算法等。这些算法可以根据像素灰度值、颜色、纹理等特征将图像划分为不同的区域。
特征提取算法:用于从图像中提取出有意义的特征,以便于后续的分类、识别或量化分析。常见的特征包括形状特征、纹理特征、颜色特征等。这些特征可以通过不同的算法进行提取,如SIFT、SURF、HOG等。
图像配准算法:用于将两幅或多幅医学图像进行对齐,以便于比较和分析。图像配准通常涉及到图像变换(如平移、旋转、缩放等)和相似性度量(如互信息、均方误差等)。
图像融合算法:用于将多源或多时相的医学图像融合在一起,以提供更全面的信息。图像融合可以通过像素级融合、特征级融合或决策级融合等方法实现。
三维重建算法:用于从二维医学图像序列中重建出三维结构。常见的三维重建算法有体绘制和面绘制两种。体绘制通过计算光线穿过体数据的累积颜色来生成三维图像;而面绘制则通过提取体数据的等值面或轮廓线来生成三维表面模型。
深度学习算法:近年来,深度学习在医学图像处理领域取得了显著的进展。通过训练深度神经网络模型(如卷积神经网络CNN),可以自动学习从医学图像中提取特征和进行分类或分割等任务。深度学习算法在医学图像识别、病变检测、病灶定位等方面具有广泛的应用前景。
以上列举的算法只是医学图像处理领域中的一部分,实际上还有很多其他的算法和技术可以根据具体的应用需求进行选择和使用。